Листок 4. Формулы и схемы.

DM-ML 1. Правило ослабление позволяет вывести из дизъюнкта A дизъюнкта $A \vee B$ для любого дизъюнкта B. Покажите, что если из дизъюнктов D_1, D_2, \ldots, D_n семантически следует дизъюнкт C (это значит, что любой набор значений переменных, который выполняет все дизъюнкты D_i , выполняет также и C), то C можно вывести из D_i с помощью применений правил резолюции и ослабления.

DM-ML 2.

- (а) Докажите, что при суммировании двоичных чисел $\overline{a_n a_{n-1} \dots a_1}$ и $\overline{b_n b_{n-1} \dots b_1}$ перенос в i-м разряде происходит тогда и только тогда, когда число $\overline{a_i a_{i-1} \dots a_1}$ больше числа $\overline{b_i' b_{i-1}' \dots b_1'}$, где $b_k' = 1 b_k$ для всех k от 1 до n. Далее считаем, что $n = 2^m$.
- (б) Постройте схему размера O(n) и глубины $O(\log n)$, которая вычислит результаты сравнений чисел $\overline{a_j a_{j-1} \dots a_{j-2^k+1}}$ с $\overline{b'_j b'_{j-1} \dots b'_{j-2^k+1}}$ для всех $k \leq m$ и всех j, кратных 2^k (при этом $j \leq n$). Результат сравнения можно хранить в двух битах: 00, если первое число меньше, 11, если первое число больше и 10, если числа равны.
- (в) Постройте схему размера O(n) и глубины $O(\log n)$, которая вычислит результаты сравнений чисел $\overline{a_i a_{i-1} \dots a_1}$ и $\overline{b_i' b_{i-1}' \dots b_1'}$ для всех i от 1 до n.
- (г) Покажите, что существует схема для сложения двух n-битных чисел размера O(n) и глубины $O(\log n)$.

DM-ML 3. Пользуясь результатом предыдущей задачи, покажите, что существует схема для умножения двух n-битных чисел размера $O(n^2)$ и глубины $O(\log n)$.

DM-ML 4. Покажите, что если булева функция вычисляется с помощью схемы полиномиального от числа входов размера и глубиной $O(\log n)$, то она вычисляется и формулой полиномиального от числа переменных размера.

DM-ML 5. Докажите, что схема, вычисляющая булеву функцию $f:\{0,1\}^n \to \{0,1\}$, которая зависит от всех n аргументов, имеет размер не меньше cn и глубину не меньше $c\log n$, где c>0 — некоторая константа, которая зависит только от базиса схемы.

DM-ML 6. Функция голосования $Maj_{2k+1}: \{0,1\}^{2k+1} \to \{0,1\}$ равняется 1 тогда и только тогда, когда хотя бы k+1 битов входа равняется единице. Покажите, что существует схема, вычисляющая функцию голосования, размера O(k).

DM-ML 2. Докажите, что у каждой невыполнимой формулы в КНФ, использующей n переменных, есть резолюционное опровержение, состоящие из не более, чем $2^{n+1}-1$ дизъюнктов.

DM-ML 3. В каждую клетку квадрата $n \times n$ поставим свою пропозициональную переменную, затем для каждой клетки, в которой стоит переменная x запишем дизъюнкт $(\neg x \lor u(x) \lor r(x))$, где u(x) — это переменная, которая находится в верхней соседней клетке для x, а r(x) — это перемененная — правый сосед x (если верхнего соседа нет, то u(x) = 0, а если правого нет, то r(x) = 0). Пусть a — переменная,

которая стоит в левой нижней клетке, допишем еще дизъюнкт (a). Покажите, что конъюнкция выписанных дизъюнктов — невыполнимая формула и для нее существует резолюционное опровержение длины $O(n^2)$.

DM-ML 4. Как модифицировать рассказанный на лекции алгоритм, проверяющий выполнимость формулы в 2-КНФ, чтобы он за полиномиальное от числа переменных время также выдавал набор значений переменных, который выполняет формулу?

DM-ML 5. Формула в КНФ называется Хорновской, если каждый ее дизъюнкт содержит не более одной переменной без отрицания. Придумайте алгоритм, который за полиномиальное от длины входной формулы время проверит, выполнима ли Хорновская формула.

DM-ML 6. По формуле в 2-КНФ построим ориентированный граф. Вершинами графа будут множество переменных и отрицаний переменных. Для каждого дизьюнкта $(l_1 \lor l_2)$ в графе проводится два ребра из $\neg l_1$ в l_2 и из $\neg l_2$ в l_1 . Докажите, что формула выполнима тогда и только тогда, когда для каждой переменной x вершины x и $\neg x$ находятся в разных компонентах сильной связности (т.е. либо из x нет пути в x, либо из x нет пути в x).