
Chapter 10

The Pigeonhole Principle

The principle we are going to discuss in this chapter is very simple: it states
that if you have more objects than boxes, then you cannot put all the objects
to boxes without puting two objects in the same box.

More formally the principle can be formulated as follows: if n > m, then any
function from [n] to [m] is not an injection. This simple statement is famous in
mathematics and called the pigeonhole principle1.

Theorem 10.1. Let X and Y be some sets such that |X| > |Y |. Then for any
function f : |X| ! |Y | there are x0 6= x1 2 X such that f(x0) = f(x1).

Proof. The statement follows from Theorem 8.6.

This simple statement is very handy in combinatorics. For example, using
this statement one may prove that in any group of more than 12 people there
are two people who were born in the same month.

Assume that there are n people in the group and n > 12. Consider the
following function f : [n] ! [12] such that f(i) = j if the ith person was born
in jth month. Note that f is not an injection since n > 12 i.e. there are i0 6= i1
such that i0th and i1th person are born in the same month.

We may also prove that in any group of people there are two people who are
friends with the same number of people in the group.

Assume the number of people is n. It is easy to see that every person
may have at most n � 1 friends. Hence, we may define a function f : [n] !
{0, . . . , n� 1} such that f(i) is equal to the number of friends in this group of
the ith person in this group. We need to consider two cases.

• If Imf ✓ [n� 1]. In this case |[n]| > |Imf | and f is not an injection.

• Otherwise, note that it is not possible that (n � 1) 2 Imf since it there
is a friend of nobody it is not possible that there is a friend of everyone.
Hence, f : [n] ! {0, 1, . . . , n� 2} and f is not an injection.

1
The pigeonhole principle is also called the Dirichlet principle, after the German math-

ematician G. Lejeune Dirichlet, who demonstrated, using this principle, that there were at

least two Parisians with the same number of hairs on their heads.

63



64 CHAPTER 10. THE PIGEONHOLE PRINCIPLE

Theorem 10.2 (Erdős—Szekeres). Every sequence of (r � 1)(s � 1) + 1 dis-
tinct real numbers contains a subsequence of length r that is increasing or a
subsequence of length s that is decreasing.

Proof. Given a sequence of length (r�1)(s�1)+1, label each number xi in the
sequence with the pair (ai, bi), where ai is the length of the longest increasing
subsequence ending with xi and bi is the length of the longest decreasing sub-
sequence ending with xi. Each two numbers in the sequence are labeled with
a different pair: if i < j and xi < xj then ai < aj , and on the other hand if
xi > xj then bi < bj . But there are only (r � 1)(s � 1) possible labels if ai is
at most r� 1 and bi is at most s� 1, so by the pigeonhole principle there must
exist a value of i for which ai or bi is outside this range. If ai is out of range
then xi is part of an increasing sequence of length at least r, and if bi is out of
range then xi is part of a decreasing sequence of length at least s.

10.1 The Generalized Pigeonhole Principle

One may generalize the pigeonhole principle in the following way. If N objects
are placed into k boxes, then there is at least one box containing at least dN/ke
objects.

Theorem 10.3. Let X and Y be some sets. Then for any function f : |X| !
|Y | there are x1, . . . , x` 2 X such that

• f(xi) = f(xj),

• xi 6= xj for any i 6= j 2 [`], and

• ` � d|X|/|Y |e

Exercise 10.1. Prove Theorem 10.3.

Using this theorem we can prove that if we draw 9 cards out of a deck
of cards, we are guaranteed that at least three of them are of the same suit.
Indeed, there are 4 suits and by pigeonhole principle if we put each card to one
out of four boxes according to their suit, one of the boxes should have at least
d9/4e = 3 cards.

Another example shows how the generalized pigeonhole principle can be
applied to an important part of combinatorics called Ramsey theory.

Assume that in a group of six people, each pair of individuals consists of
two friends or two enemies. One may prove that there are either three mutual
friends or three mutual enemies in the group.

Let A be one of the six people; of the five other people in the group, there
are either three or more who are friends of A, or three or more who are his
enemies A. This statements follows from the generalized pigeonhole principle
since when five objects are divided into two sets, one of the sets has at least
d5/2e = 3 elements. Without loss of generality we may suppose that B, C, and
D are friends of A. If any two of these three individuals are friends, then these
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two and A form a group of three mutual friends. Otherwise, B, C, and D form
a set of three mutual enemies.

End of The Chapter Exercises

10.2 Show that among any group of five (not necessarily consecutive) integers,
there are two with the same remainder when divided by 4.

10.3 Show that if there are 30 students in a class, then at least two have last
names that begin with the same letter.

10.4 Let n be a positive integer. Show that in any set of n consecutive integers
there is exactly one divisible by n.

10.5 Prove that for every integers a1, . . . , an there are k > 0 and ` � 0 such

that k + `  n and
k+P̀
i=k

ai is divisible by n.

10.6 Let S ✓ [20] be a set. Show that if |S| � 13, then there are a, b 2 S such
that a� b = 6.

10.7 How many numbers must be selected from the set [6] to guarantee that at
least one pair of these numbers add up to 7?

10.8 Sasha is training for a triathlon. Over a 30 day period, he pledges to train
at least once per day, and 45 times in all. Then there will be a period of
consecutive days where he trains exactly 14 times.

10.9 Show that among any n+1 positive integers not exceeding 2n there must
be an integer that divides one of the other integers.

10.10 Let a1, a2, . . . , at be positive integers. Show that if a1+a2+ · · ·+at�t+1
objects are placed into t boxes, then for some i 2 [t], the ith box contains
at least ai objects.

10.11 Let {(x1, y1), . . . , (x5, y5)} ✓ Z2 be a set of five distinct points with integer
coordinates in the xy plane. Show that the midpoint of the line joining at
least one pair of these points has integer coordinates.


